Towards Playlist Generation Algorithms Using RNNs Trained on Within-Track Transitions
نویسندگان
چکیده
We introduce a novel playlist generation algorithm that focuses on the quality of transitions using a recurrent neural network (RNN). The proposed model assumes that optimal transitions between tracks can be modelled and predicted by internal transitions within music tracks. We introduce modelling sequences of high-level music descriptors using RNNs and discuss an experiment involving different similarity functions, where the sequences are provided by a musical structural analysis algorithm. Qualitative observations show that the proposed approach can effectively model transitions of music tracks in playlists.
منابع مشابه
Design and Realisation of an Efficient Content Based Music Playlist Generation System
This thesis is on the subject of content based music playlist generation systems. The primary aim is to develop algorithms for content based music playlist generation that are faster than the current state of technology while keeping the quality of the playlists at a level that is at least comparable with that of the current state of technology. Not only need the algorithms be fast, they shall ...
متن کاملEmpirical Analysis of Track Selection and Ordering in Electronic Dance Music using Audio Feature Extraction
Disc jockeys are in some ways the ultimate experts at selecting and playing recorded music for an audience, especially in the context of dance music. In this work, we empirically investigate factors affecting track selection and ordering using mixes created for the Essential Mix. The Essential Mix is a well known weekly radio show on BBC Radio 1 that showcases various styles of electronic dance...
متن کاملGenerating Similarity-based Playlists Using Traveling Salesman Algorithms
When using a mobile music player en-route, usually only little attention can be paid to its handling. Nonetheless it is desirable that all music stored in the device can be accessed quickly, and that tracks played in a sequence should match up. In this paper, we present an approach to satisfy these constraints: a playlist containing all tracks stored in the music player is generated such that i...
متن کاملUnderstanding Music Playlists
As music streaming services dominate the music industry, the playlist is becoming an increasingly crucial element of music consumption. Consequently, the music recommendation problem is often casted as a playlist generation problem. Better understanding of the playlists is therefore necessary for developing better playlist generation algorithms. In this work, we analyse two playlist datasets to...
متن کاملEmbedding Songs and Tags for Playlist Prediction
Automatic playlist generation can be a useful tool to navigate the myriad choices available to users in music services today. Here, we present our recent work on explicitly modeling playlists without requiring external similarity measures. Our Logistic Markov Embedding is trained directly on historical playlist data and can unify songs and (when available) social tags in a Euclidean space. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1606.02096 شماره
صفحات -
تاریخ انتشار 2016